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Lévy statistics are derived from a dynamical system, which can be either Hamiltonian or not, using a
master equation approach. We compare these predictions to the random walk approach recently
developed by Zumofen and Klafter for both the nonstationary [Phys. Rev. E 47, 851 (1993)] and station-
ary [Physica A 196, 102 (1993)] case. We study the unperturbed dynamics of the system analytically and
numerically and evaluate the time evolution of the second moment of the probability distribution. We
also study the response of the dynamical system undergoing anomalous diffusion to an external perturba-
tion and show that if the slow regression to equilibrium of the variable “velocity” is triggered by the per-
turbation, the process of diffusion of the ‘“‘space” variable takes place under nonstationary conditions
and a conductivity steadily increasing with time is generated in the early part of the response process. In
the regime of extremely long times the conductivity becomes constant with a value, though, that does
not correspond to the prescriptions of the ordinary Green-Kubo treatments.

PACS number(s): 05.40.+j, 05.45.+b, 05.60.+w, 47.27.Qb

I. INTRODUCTION

The foundations of our understanding of statistical
physics are the phenomenological theory of Brownian
motion and stochastic processes [1] together with the
chaotic behavior of nonintegrable Hamiltonian systems
[2]. The latter motion is an intrinsic property of non-
linear dynamical systems [3], whereas the former motion
results from the system of interest being coupled to the
environment. If a dynamical system such as the standard
map is fully chaotic, meaning that all the KAM
(Kolmogorov-Arnold-Moser) tori have dissolved into a
chaotic sea, then the average energy of the system in-
creases linearly with time and the system is diffusive.
This connection between statistics and dynamics has been
known for nearly two decades [4], but it is only recently
that this connection has been systematically exploited to
provide a dynamical basis for statistical physics [5].

Concurrently, explaining the phenomenon of anoma-
lous diffusion in which the mean square amplitude of a
process increases in time as t 2 with H #1 has attracted
the attention of a number of investigators. This
phenomenon is found in the phase diffusion in the chaotic
regime of a Josephson junction [6], chaos-induced tur-
bulent diffusion [7], the relationship between the rms
characteristic length of a polymer and the number of
monomer units [8], diffusion of a Brownian particle in
pure shear flow [9], the zero-component spin model with
long-range interaction [10], and the diffusion of a passive
scalar in a turbulent flow field [11]. The description of
such processes using nondiffusive Lévy statistics has been
popular among a number of researchers [12—14]. Scien-
tists are now searching to make the proper connection
between Lévy stable processes and certain dynamical sys-
tems. The key element is weak chaos, in which stable is-
lands persist in the chaotic sea. A number of investiga-
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tors maintain that this coexistence of stable islands, can-
tori, and the chaotic sea produces Lévy statistics due to
the chaotic orbit sticking to the cantori at the phase
space boundary between the two types of motion
[15-21]. The results obtained by Zumofen and Klafter
[15] within the framework of the continuous-time ran-
dom walks (CTRW’s) are of particular interest. They
used two approaches, the jump model (JM), in which the
particles wait at a certain location, then jump instantane-
ously between sites, and the velocity model (VM), where
particles move at a constant velocity between turning
points, where they choose a new direction at random.
Remarkably, the two models result in the same Lévy dis-
tribution. The CTRW method has been more recently
applied [22] to the case where the dynamical process is
the standard map. It is remarkable that Ishizaki et al.
[20] independently derived the Lévy distribution for a
histogram of chaotic trajectories generated by the stan-
dard map.

From a dynamical point of view, all diffusion process-
es, anomalous as well as normal, result from the integra-
tion of the equation of motion

x(1)=¢, (1.1)

where § is a statistical variable characterized by the equi-
librium autocorrelation function

_ (&0)&2))
(&)
Under the stationarity assumption, it can be shown [23]
that

(1) = (xH0) +2(8) g [ ar' [ @t .

(1.2)

(1.3)

The dynamical process under study in this paper rests on
the dynamical variable £ virtually fluctuating among two
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distinct values, 1 and —1, with the form of the waiting
time distribution ¥(¢) in each of these two states. Under
this specific condition [6(a)] the expression for the corre-
lation function <I>§(t)

(1.4)

D)= J Tarw—ogan

<§2) <t>
is derived. Here () is the mean waiting time in one of
the two states of the variable &,

(t)Efowttﬁ(t)dt ) (1.5)

Equation (1.3) is exact and when it is supplemented by
(1.4) it provides a reliable expression for the second mo-
ment. This equation rests on the stationary condition,
namely, the state where the distribution of the variable &
is time independent. Ordinary diffusion is obtained under
the condition that the variable £ is characterized by a
finite time scale, defined by

0

= [Tdrogn . (1.6)
Ordinary diffusion is exhibited at times much larger than
this time scale, where the stationary condition is natural-
ly realized for whatsoever initial conditions are con-
sidered. In this case, the two time scales (7 ) and 7 have
the same order of magnitude. Anomalous diffusion, on
the other hand, is generated when the correlation func-
tion ®,(¢) in the long-time limit has an inverse power-law
behavior,

k

(L.7)

The focus of this paper is on Lévy processes, and hence
those which evolve faster than standard diffusion. This
implies [23] that (1.7) has positive tails and

0<B<1. (1.8)

This means that in this case the only characteristic time
scale left is (¢ ), since the correlation time 7 diverges.

In this specific condition the correlation function of the
variable £ is remarkably slow, and also the process of re-
gression to equilibrium of its distribution is remarkably
slow. For this reason anomalous diffusion is strongly
affected by the initial condition considered. If the vari-
able velocity & is given an initial condition not corre-
sponding to the equilibrium state, it gradually evolves to-
wards its equilibrium and it strongly influences the
diffusion process of the variable x. Zumofen and Klafter
have explored both the nonstationary condition for the
JM and VM [15,17], and the stationary condition for the
VM [16,17], and have pointed out the remarkable
differences exhibited by the diffusion process under these
two different conditions.

The focus of the present paper is on the response of
anomalous diffusion to external perturbations. However,
before addressing this issue, we provide the reader with a
clear perspective of the way a dynamical equation of
motion such as (1.1) leads to Lévy statistics, as a relevant
example of nonordinary statistical mechanics. To do this
we adopt a master equation (ME) approach. In principle,
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the ME approach plays a major role in the rigorous
derivation of a transport process from a Liouville equa-
tion [24(b)]. This is so because the ME in either the nor-
mal [25] or generalized [26] form has a structure which
can be formally derived from the Liouville equation by
means of a projection method [24]. This is the route fol-
lowed by Bianucci et al. [5] to derive ordinary statistical
mechanics from a fully chaotic dynamical process. The
microscopic origin of anomalous diffusion implies a
departure from this ideal condition, thereby making
harder the adoption of the projection method as a
theoretical tool to derive diffusion from a process of
deterministic dynamics. The present paper is less ambi-
tious and the ME approach rests essentially on intuitive
arguments and the suggestions provided by the work of
Seshadri and West [27] rather than on a microscopic
derivation. However, this approach makes transparent
the derivation of Lévy processes from a dynamical pic-
ture.

Let us illustrate the basic idea used to derive the Lévy
distribution on the basis of intuitive ME arguments. A
stationary Lévy process is characterized by the following
distinctive property. The Fourier-Laplace transform of
the Lévy distribution P (x,t), denoted by B k,s), has the
explicit form

Pk, j= L , (1.9)
S T blk®
with
0<a<2. (1.10)

Seshadri and West [27] noticed that the probability distri-
bution P (x,t) obeys the following equation of motion:

—P(x,t)=b Lsm

ar I(l1+a)

® [~ dy P(y,1). (1.1D)

S S
| x — y| 1+a
This equation is not a ME, because the population at a
given site with coordinate x can only change because of
the transitions from other sites y. In a proper ME the
population at the given site x should also undergo a de-
cay process due to transitions away from this site to all
the other sites in the available space. However, (1.11)
suggests that a Lévy process might be generated within a
ME approach by transitions from a site y to a site x with
probability proportional to 1/|x —y|**!. To make this
clear consider a realization of this kind of ME on an
infinite lattice, whose coordinates are the discrete vari-
ables

(1.12)

. (1.13)

and A the constant lattice spacing. The ME can be writ-
ten

iP(r,t)=

ar (1.14)

—IL,P(r,t)+ 3 A, ,P(r',t),
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with a positive definite decay constant

r=34,. (1.15)
<

Let us now assume that the transition matrix has ele-

ments

_ K
Arr= [FA—r'Alet! T

The second term on the right-hand side (rhs) of (1.14) can
be divided into two parts: the first refers to the r"s satis-
fying the condition |r —r’| <ny, and the second to the
r”’s with |[r —r'| > ny. Note that n, is a positive integer,
and that if it is large enough the second contribution can
be replaced by an integration over the continuous vari-
able y. The long-time dynamics of this system essentially
depends on this second term. On the other hand, if we
neglect the contribution of |r —r'|<n; to the sum in
(1.14) as well as the first term on the rhs of (1.14), the
remaining contribution leads to dynamics indistinguish-
able from that described by (1.11). This is how a ME can
lead in the asymptotic time region to a behavior indistin-
guishable from that of a Lévy process.

In Sec. IT we shall show that the ME enables us to es-
tablish the correct asymptotic properties of the correla-
tion function ®(¢), the second moment {(x2(1)), and the
probability distribution P(x,t), in complete accord with
the recent findings of Mori and co-workers [2,20]. Ac-
cording to the projection method [24] the ME, with no
inhomogeneous term, refers to the stationary condition
[24]. Although (1.4) is not exact, it is expected to be
correct if we can neglect the fluctuations making |&|
depart slightly from 1. The ME rests on the same ap-
proximation, but it does not lead to the same result, albeit
the power of the resulting inverse power law for ®.(7) is
the same. This is where the ME needs further improve-
ments to share the nice property of the stationary VM,
which is found to be in full agreement with (1.3) supple-
mented by (1.4).

The central result of this paper concerns the response
of anomalous diffusion, in the Lévy regime, to external
perturbations. According to the standard Green-Kubo
method [28] the response of a normal diffusion process to
a perturbation resulting in a bias should be given by

(1.16)

d t , ,
E(x(t))—Kf()(é‘(O)g(t ) eqd?’ (1.17)
where K is a constant depending on the physical details
of the system considered. If we imagine (1.17) to be ap-
plicable also to the case of anomalous diffusion, we are
led to conclude that a stationary current, namely, a con-
stant velocity {x ), is not allowed. The power-law depen-
dence (1.7) with the condition (1.8) suggests that in the
case of anomalous diffusion conductivity might become
time dependent and increase as a function of time. We
shall prove that this property applies to the early stage of
the response subsequent to an abrupt perturbation, and
that in the long-time regime a finite conductivity is
recovered, albeit with a value not corresponding to the
standard Green-Kubo prescriptions.

The outline of the paper is as follows. Section II is de-
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voted to illustrating the ME arguments. Section III de-
scribes the dynamical model to which our theoretical ar-
guments and numerical calculations are applied. The
most relevant aspects of the numerical technique here
adopted are described. The unperturbed dynamical evo-
lution of this model is studied in Sec. IV, where we com-
pare the theoretical prediction of the ME approach on
the time evolution of the second moment {x(¢)) to both
the stationary and nonstationary predictions of Zumofen
and Klafter [15-17] and to the corresponding results of
numerical ‘“experiments.” In Sec. V we study the
response of the dynamical system to a geometrical and a
dynamical perturbation both analytically and numerical-
ly. In the dynamical perturbation case, with the help of
the stationary and nonstationary versions of the VM, and
with the support of numerical calculations, we illustrate
the transition from the early process of anomalous
response, with a time-dependent conductivity, to the
long-time regime of ‘“normal” response, with a time-
independent conductivity. Concluding remarks on the
results of this paper are made in Sec. V1.

II. THE ME APPROACH

The question of the equivalence of the ME and certain
random walks, raised by Bedeaux, Lakatos-Lindenberg,
and Shuler [25], was satisfactorily solved by Kenkre,
Montroll, and Shlesinger [26] by establishing a connec-
tion between a random walk and a generalized ME of the
following structure:

a — t ’ ® ’ ’ ’ ’ ’
o Pen=[ldr [7 dxKx—x't =t )P(x'1)
(2.1)

where the kernel K (x,t) has the following detailed bal-
ance structure:

K (x,)=T(x,0—8(x) [

— %

M(x',t)dx" . (2.2)
The approach developed herein, essentially valid only for
the dynamical derivation of Lévy processes, does not de-
pend on any random walk theory, and directly derives
the structure of I1(x,?) using physical arguments to estab-
lish the equivalence between (2.1) and (1.11).

The dynamical approach to Lévy processes followed in
this paper is based on a map studied for the same purpose
by Zumofen and Klafter (see Sec. III). This map de-
scribes the motion of the velocity &, which is a variable
randomly fluctuating between the two possible values,
—1 and 1. This makes it possible for the variable veloci-
ty £ to stay in one of these two states with the waiting
time distribution

_ A
O e

Normalization requires g > 1; the normalization condi-
tion also sets

A=(u—1)B* 1.

(2.3)

(2.4)

From the theory of [15] we obtain (see also Secs. III and
V)
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(2.5)

On the one hand, from the time integration of (1.1) we
immediately see that anomalous diffusion must be a
consequence of a lack of time scale for the variable £ and,
consequently, of the non-Markovian properties ineluct-
ably associated with this lack of a time scale. On the oth-
er hand, a Lévy process is the exact solution of the
Bachelier-Smoluchowsky-Chapman-Kolmogorov  equa-
tion [12] and is essentially a Markov process. We show
that it is possible to make these two seemingly quite
different processes compatible if we make the non-
Markovian properties stemming from the inverse power-
law behavior of the velocity autocorrelation function be-
come transition probabilities with an inverse power-law
dependence on the length of the jump in space [14]. Con-
sequently, we change the time nonlocality into a space
nonlocality, and we show that the latter is the space non-
locality of the Lévy processes expressed by (1.11). This
space nonlocality cannot be eliminated by observing suit-
ably large distances because of the inverse power-law
structure of the corresponding space transition.

The connection between nonlocality in space and non-
locality in time is established by remarking that,
throughout the whole period of time ¢ spent by the parti-
cle within one of its two velocity states, the particle
makes a jump of length |x|=¢. This means that the prob-
ability of making a jump from one site to another at a dis-
tance |x| from the initial site is proportional to the wait-
ing time distribution, namely,

A

_— 2.6
(B + |x|)® 2.6)

M(x)e [ "Ml 0dt

Thus the connection with the structure of (1.11) and
(1.16) is established, provided that we set

p=1l+a. 2.7)

However, it is still necessary to determine how the
Markovian character underlying the Lévy processes is
recovered from the ME. Lévy processes are rigorously
Markovian [12], whereas the generalized master equation
(2.1) was originally constructed [26] for the purpose of
reproducing the predictions of the random walk theories
at any time scale, and for this reason has been made ex-
plicitly non-Markovian. Actually, the dependence of
II(x,t) on time, in principle, cannot be neglected because
the transition beginning at one site and ending at another
a distance |x| away takes a time ¢ =|x| to occur. Thus
the following condition must be fulfilled:

I(x,1) < (x,t) , (2.8

where ¥(x,¢) is the probability distribution introduced by
Zumofen and Klafter [15] to move a distance x in a time ¢
in a single motion event. This transition probability
reads

Yx,1)=18(|x| —o)p(z) . 2.9)

In conclusion, the motion of x must be non-Markovian.
This is a consequence of the fact that the statistical and
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dynamical properties of x are determined by other vari-
ables, namely, £ and, if necessary, the set of variables re-
quired to describe the motion of £ As pointed out in
[24(a)], the non-Markovian properties of a variable of in-
terest are a necessary consequence of a picture where the
dynamics of these additional variables is not explicitly
taken into account. Thus, the Lévy processes can only be
an idealization of the long-time limit, and if the long-time
limit is compatible or not with the Markovian assump-
tion is indeed a condition to assess for the dynamical
derivation of these processes.

It must be remarked that the time rate of change of
P(x,1) is obtained by integration over space and time of
II(x,¢). This implies that the proportionality constant in
(2.8) has the dimensions of an inverse time, so that

M(x, )= 9(x,1) . (2.10)
T
Since, as pointed out in Sec. I, the only time scale avail-
able in the region 2 <p <3 is the mean waiting time (¢ ),
Eq. (1.5), we are naturally led to identify T with it,

B
T=(t)y=——.
(r=—2
In Appendix A we support this choice of time scale with
arguments derived by the random walk theory [29].
Let us now consider the Laplace-Fourier transform of
(2.1):

(2.11)

1
s —R(k,s)
We adopt the convention that F(k,s) denotes the
Fourier-Laplace transform of the function F(x,t) and
G (s) the Laplace transform of the function G (¢). By us-

ing the expressions for the kernel (2.2) and (2.10) we ob-
tain for K (k,s) the following explicit form:

Rik5)= Tos)—ils)
’ T

P(k,s)= 2.12)

) (2.13)

where, according to our conventions, $(k,s) is the
Laplace-Fourier transform of (2.9) and #(s) is the La-
place transform of the waiting time distribution (z).

To derive the Lévy distribution only one basic step
remains: we have to properly implement the Markovian
approximation in (2.13). This means that we have to look
for the limiting value of R (k,s) in the large-space, long-
time limit where k —0 and s —0 together. If the out-
come of this asymptotic procedure is to be a Lévy pro-
cess, which is characterized by the rescaling property [12]

x=~tl/e (2.14)
then it is convenient to set
s=k?®. (2.15)

Using the rescaling property (2.15) and the condition
a>1, which implies s tending to zero faster than k, we
obtain [note that «a is related to p by (2.7)]

1

- (2.16)
s +blk|®

P(k,s)=

’
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s

_B*'r2—p) T
b T cos 2(,u D . (2.17)

It is worthwhile to notice that this prediction coincides
with that of the JM and VM in both the stationary and
nonstationary regimes. The JM in the stationary regime
has not been explicitly dealt with by Zumofen and
Klafter [16,17]. Thus, in Appendix B we illustrate the
theoretical arguments necessary to derive the probability
distribution for the JM in this case. Details on the calcu-
lation leading to (2.17) and to proving the coincidence be-
tween this prediction and those of the VM and IM
theories, in both the stationary and nonstationary re-
gimes, are given in Appendix C.

It must be remarked that the theory developed in this
section 1is tailored to the region 2<pu <3. The region
with u <2 (a<1) is excluded by the fact that for u <2
the first moment of the waiting time distribution
diverges, thereby preventing us from defining the time
scale T={(t). Furthermore, even if T were arbitrarily
given a finite value, and a were still identified with p—1
[see (2.7)] in the asymptotic limit of vanishing k and s the
resulting value of b would vanish. The region p > 3 is ex-
cluded by the fact that the Markovian approximation
leads to the structure (2.16) with a>2, in which case
P(x,t) is not positive definite [12].

At this stage it is worthwhile to show that the theoreti-
cal and numerical results obtained by Mori and co-
workers in their investigation of accelerated modes of the
standard map [20] adhere to the prescriptions of the
above theory. In that case the asymptotic waiting time
distribution is

lim ()= — (2.18)

t > tH

with 2 <u <3. This waiting time distribution refers to
the sojourn of the trajectories in the region at the border
between the chaotic sea and the ordered islands corre-
sponding to the accelerated modes. They find the follow-
ing essential properties.

(i) The probability distribution P (x,t) rescales as fol-
lows:

1
(/=1

P(x,t)= (2.19)

x
(Mp=n |

(i) At large distances the function F(y) is character-
ized by long tails,

(2.20)

(iii) The long-time limit of the correlation function
®.(2) is given by
lim ®y(1)~ ——

t— t”fz

(2.21)
(iv) The long-time limit of the second moment is given
by

lim (x2(z)) =24

t— o0

(2.22)
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with

H=2—p/2 . (2.23)

All these properties can be readily predicted by means of
the above ME approach. The properties (i) and (ii) are
immediately derived from the Lévy-like structure (2.16),
the well known rescaling properties, and space asymptot-
ic properties of the Lévy statistics [12,13].

The properties (iii) and (iv) can be easily derived by the
joint use of (2.16) and the standard dynamical approach
to diffusion. We note that the mere integration of (1.1)
with the unique assumption that the process & is station-
ary leads [23] to (1.3). By Laplace transforming (1.3) and
comparing the result for (X*(s)) with that derived using
P(k;s) of Egs. (2.12) and (2.13) we obtain

t2(t)
q) = -
YR YP=I

which immediately accounts for (2.21). Then the proper-
ty (iv) is obtained by differentiating (2.22) twice with
respect to time and comparing the resulting expression to
the second time derivative of (1.3). This shows clearly
that the numerical results of Mori and co-workers [20]
must be regarded as the first dynamical realization of a
Lévy process, thereby supporting the more recent
findings of Klafter, Zumofen, and Shlesinger and Zu-
mofen and Klafter [22]. In the remaining part of this pa-
per we shall focus on the dynamical model of Sec. III
rather than on the standard map.

It must be pointed out that (2.24) provides the correct
asymptotic properties of the correlation function ®.(1),
but not an exact agreement with the results (1.3) and
(1.4). Of the three models mentioned only the VM gives
exact agreement with these dynamical predictions.

(2.24)

III. THE DYNAMICAL MODEL

The discrete time dynamical model studied herein is
one of the two discussed in the recent paper by Zumofen
and Klafter [15], originally introduced by Geisel,
Nierwelberg, and Zacherl [6(a)]. We focus on the map
they used to discuss anomalous diffusion that evolves fas-
ter than normal. Using the property of antisymmetry by
reflection around x =0 and the invariance by translation
of a unit distance, they express their map in the reduced

range 0=<x < 1, where
Xp1=8(x,), (3.1)
with
g(x)=(1+A)x +ax? 0=x=1. (3.2)
They choose the constant to be a =2%(1—A/2).
We define the reduced map [15]
X,+1=8(x,), 0<x<1, 3.3)

N, ,,=8(%,)+N, .

The coordinate x of the trajectory has been decomposed
into the box number N and the position X within a box
(x,=N,+x,). g(x) is the reduced map for the reduced
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coordinate X illustrated in Fig. 1 and £(X) is used to in-
crease or decrease the box number N by unity. We are
now in a position to express the variable velocity & of Sec.
II in terms of the mapping variable. This is given by
E=2x—1.

By adopting this procedure to make the numerical cal-
culations we allow the velocity of the particle to also at-
tain values distinct from 1 and —1. However, we note
that the closer the particle is to the left border of the left
laminar region or to the right border of the right laminar
region, the larger is the time spent in the corresponding
laminar region. Consequently, the resulting dynamics is
slightly different from the case where the variable £ has
only the states 1 and — 1, with the same inverse power-
law distribution ¥(¢) in each of them. The unperturbed
dynamics of the map is obtained by setting A=0.

The numerical calculations are made by direct numeri-
cal implementations of the Zumofen-Klafter map [see
Egs. (3.1)-(3.3)]. The dynamics of the map is computed
by means of the recursion relation given by the reduced
map (Fig. 1) with the additional assumption that when
the particle is found in the left laminar region the cell in-
dicator N is decreased by one unit, and when it is found
in the right laminar region the cell indicator N is aug-
mented by one unit.

The nonstationary condition is realized as follows. The
initial values of the reduced map are chosen randomly in
the [0,1] interval and the iteration is repeated 10000
times. The average is taken over 10 000 trajectories.

The stationary condition is assured by observing
diffusion after ensuring that the transient process con-
cerning the velocity £ is over. In other words, the sta-
tionary condition is realized by choosing random initial
conditions in the [0,1] interval and letting the reduced
map evolve throughout the whole regime of regression of
velocity to equilibrium for a transient time T, while
keeping the cell indicator N =0, namely, preventing
diffusion from taking place. After the time T, one lets
the cell indicator N evolve according to Egs. (3.1)-(3.3),
the iteration is repeated 10000 times and the average is
taken over 10000 trajectories. One determines the tran-

FIG. 1. Reduced map defined by (3.3) with z =3,
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sient time T,, by observing how long it takes for the
average of the reduced map starting from a nonstationary
initial condition to reach its stationary value. The tran-
sient time strongly depends on p; for example, for u=2.5
we find that T,,, = 1000 is a proper choice.

IV. THE UNPERTURBED TIME EVOLUTION
OF THE SECOND MOMENT

The second moment of a process can be obtained from
the second derivative of the characteristic function. This
procedure is reviewed in Appendix D where we obtain
the following predictions for the second moment {x%(¢)).

The ME approach results in

logyo (z%(2))

log;q (z*(t))

0.5 1 1.5 2 2.5 3 3.5 4
log,ot

FIG. 2. Evolution of the second moment (x%(t)) of the
dynamical process (3.1)-(3.3) with z=%. (a) Nonstationary
condition: The dots show the results of numerical calculations;
the short-dashed and the long-dashed lines are the predictions
of the JM approach (4.1), and of the VM approach (4.2), respec-
tively (the numerical calculations are made according to the
nonstationary prescription illustrated in Sec. III, and the VM
and JM are evaluated according to the nonstationary prescrip-
tion of Appendix D). (b) Stationary condition: The dots show
the results of numerical calculations, the solid line shows the
prediction of the ME theory, the short-dashed curve denotes the
prediction of the JM approach (4.3), and the long-dash line
denotes the prediction of the VM theory (4.4) (the numerical
calculations are made according to the stationary prescription
illustrated in Sec. III, and the VM and JM are evaluated accord-
ing to the stationary prescription of Appendix D).
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<x2(t))=§ —D@=2) pu—zpa-u (4.1)

4—p)(3—p)

As far as the JM and the VM approaches are con-
cerned, let us consider first the nonstationary case. The
JM approach results in a prediction coincident with (4.1).
The VM approach results in

2(pu—2) 24—

2t = B* 2t4 I R
SO =T a0

which differs from (4.1) by a numerical factor.

Let us now consider the stationary case. The JM ap-
proach leads to

(4.2)

(xz(t))=—2(&B‘“2t4f” 4.3)
(4—p)3—p)
and the VM yields
2 2__._._2 H=2.,4—p 4.4
(x%(2)) a2 4.4)

All theories result in the same time exponent for anom-
alous diffusion. This is consistent with the results of nu-
merical experiments [see Figs. 2(a) and 2(b)]. However,
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FIG. 3. g(u) coefficient function defined by (4.5) in both the
nonstationary (a) and stationary (b) cases. The dots show the re-
sults of numerical calculations in the corresponding conditions.
The long-dashed lines and the short-dashed lines denote the pre-
diction of the VM and the JM theories, in the corresponding
conditions. The solid line of (b) denotes the prediction of the
ME approach.
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there are differences between the two prefactors. To
check the accuracy of these predictions with the numeri-
cal “experiments” we proceed as follows. We factor out
the time dependence from the second moment {x2(z))
and define the coefficient function

(x*(1))

g(u)E—FT .

(4.5)
Thus, from the numerical evaluation of the second mo-
ment we define the function g(u), which is then com-
pared to the predictions stemming from (4.1)—(4.4) with
B assigned by (2.5). From Fig. 3(a) we see that in the
nonstationary case the prediction of the JM approach is
slightly closer to the results of the numerical experiment
than the prediction of the VM approach. In the station-
ary case, we see from Fig. 3(b) that the ME is the theory
whose predictions are closest to the numerical results.

It is remarkable that all three theories result in a diver-
gence at u =3, which is not consistent with the results of
the numerical experiment. Notice that the direct integra-
tion of (1.3), supplemented by (1.4), leads to the same re-
sult as the VM theory, (4.4). This is a remarkable aspect
of the VM, but it also casts doubt on the accuracy of
(1.4), since this theory shares with the VM, and with all
the other theories, the divergence at u=3. This would
suggest that none of the three theories, nor (1.4), is entire-
ly correct for all values of the parameter .

V. RESPONSE TO PERTURBATION

We study here the problem of the response of the map
to two different kinds of perturbation, geometrical and
dynamical. We focus our attention on the first moment
of the x distribution, which in the absence of perturba-
tions would vanish. We consider two different ways of
observing the response to these perturbations, nonstation-
ary and stationary. The former refers to an initial condi-
tion for the dynamical system of Sec. III, with the veloci-
ty & uniformly distributed in the interval [—1,1]. We
could assess that the response in this case is essentially
equivalent to adopting an initial condition with the veloc-
ity in the equilibrium distribution in the absence of per-
turbation. Thus, from a physical point of view this
choice corresponds to a case where the perturbation is
abruptly applied to a sample of diffusing particles in a
stationary state. The second choice refers to the case
where the variable velocity is given an initial distribution
at equilibrium with respect to the map in the presence of
the perturbation.

In Appendix E we provide the details of the calcula-
tions leading to the analytical expressions for the first
moment of the response here reported. The calculations
are made using two different methods.

(i) The first method consists of making the strength of
the perturbation tend to zero, expanding the Laplace
transform of (x(z)) with respect to this perturbation
strength, and keeping only the lowest-order contribution.
Then as time tends to infinity, namely, s tends to zero, the
lowest-order contribution with respect to s is considered.
This approach can be applied to all the models in both
the nonstationary and stationary conditions but the VM



50 DYNAMICAL APPROACH TO ANOMALOUS DIFFUSION: ...

in the stationary state.

(ii) The second method consists of applying the pro-
cedure (i) in the reversed order, making s tend to zero
first, and then making the perturbation strength tend to
zero.

In the case of the geometrical perturbation the results
turned out to be independent of the method adopted. In
the case of the dynamical perturbation, on the contrary,
the first method results in a response which coincides
with that expected on the basis of the Green-Kubo argu-
ment (1.17), and the second method leads to a prediction
which fits the expectation of the stationary treatment.

A. Geometric bias

The first perturbation of the map consists in changing
the size of its left laminar region (see Fig. 1) by the quan-
tity p. This has the effect of changing the parameter B in
the left laminar region by the quantity 7, which is deter-
mined using simple geometrical arguments (see Appendix
F). Thus the perturbed waiting time distribution reads as

follows:
P(x,1)=18(x —t)P(t)+ 16(x +0)¢,(1), (5.1)

where ¥(t) is the unperturbed waiting time distribution
and ¢, (¢) is the perturbed one, defined by

A
¢17(t)=_1,_

, (5.2)

(B—n+1t)

where (see Appendix F)
n=(p—l)l1+;gf—l . (5.3)

Notice that both ¢(¢) and ¢,(¢) are normalized, namely,

A, =(p—1)(B-—qr . (5.4)
This guarantees the global normalization
J 7 ax [Tdrpxn=1. (5.5)

The calculations outlined in Appendix E lead to the fol-
lowing conclusion. The response to the perturbed wait-
ing time distribution is the same for the three theories, in
both the stationary and nonstationary conditions, and is
expressed by
=1

(x(n)) iR (5.6)
Figure 4 compares this theoretical prediction to the re-
sult of the numerical experiment in the case pu=2.5.
Both theory and numerical experiment result in a linear
dependence of the response on time. On this issue, the
agreement between theory and numerical experiment is
remarkable. However the slope of the numerical experi-
ment is about twice that of the theoretical prediction. To
assess the p dependence of this disagreement we again
define a coefficient function

_{(x))B
f(y.)————nt , (5.7)
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FIG. 4. First moment of x as a function of time. This is the
response of map (3.1)—(3.3) with z =13 to the perturbation with
geometric bias. The average is taken over 10000 trajectories
whose initial conditions are randomly chosen in the interval
[0,1]. The dots show the results of numerical calculations and
the solid line is the prediction of the ME approach. Note that
the ME prediction coincides with those of the JM and VM ap-
proaches.

which, according to (5.6), should be independent of u and
yield

fp)=1.

This prediction is compared to the numerical results in
Fig. 5, and for both theory and numerical “experiment”
results in horizontal straight lines. We see that there is a
good qualitative agreement between the ME, JM, and
VM predictions and the numerical experiment, while the
quantitative agreement is not satisfactory.

(5.8)

B. Dynamical bias

A dynamical bias is obtained by driving the left lami-
nar region with the perturbed map (3.2) with a nonvan-
ishing value of A. Using Eq. (67) of Ref. [15], we obtain
the following perturbed expression for the waiting time
distribution:

f(»)

o o o o
o N & O ™

FIG. 5. f(u) coefficient function defined by (5.7). The dots
show the results of numerical calculations and the solid line is
the prediction of the theory.
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2exp[At/(u—1)]
(1+(2/M){ exp[At /(u—1)]— 1}

At A=0, we recover the form (2.3) with (2.4) and (2.5).
By expanding (5.9) up to the first order in A, we obtain

P(t)= (5.9)

A
(B + 1)

At

t
£t
u—1

2 (B+1t)

P(t)= (5.10)

In the limiting case of extremely weak A’s the response
to this kind of perturbation turns out to be independent
of whether the perturbed waiting time distribution has
the form (5.9) or the form

A,
Y (t)=——exp(—et),

(5.11)
(B +1)#
provided that the damping ¢ is related to A by
e=p T2 (5.12)
2(pu—1)

The expression for the perturbed waiting time distribu-
tion (5.11) is related to (5.9) through (5.12).

Applying the method (i) we obtain the following re-
sults. For the ME, and for the JM approach in the non-
stationary case, we obtain for the average displacement

(x(t))_ﬁ_#__)_(f‘___)

S A (5.13)
2 (4—u)3—p)
The stationary expression for the JM is given by
(x(n)=S——pu-zyin (5.14)

2 (4—p)(3—p)

The VM approach in the nonstationary case leads to

_5 (u—1) BH 2t n
(x(1))= 2 A=) 4

Method (i) cannot be applied to the VM in the stationary
case. By applying method (ii) we obtain

-2 (= D0G=p) s
2

(5.15)

(x(2))=¢ (5.16)
Surprisingly, the application of method (ii) to all the oth-
er cases leads to the same result, (5.16); namely, to a con-
ductivity constant in time.

Comparing (5.13) and (5.15) to the corresponding ex-
pressions for the unperturbed second moments, (4.1) and
(4.2), we can rewrite these results as follows.

(x(t))bias=—§—(x2(t))0 (5.17)
for the JM approach in the nonstationary case. The non-
stationary expression for the VM implies for this model

8 E 1 ) ( 2 )
2 2(pn
Here, to make the result more apparent, we have used the
subscript ‘“bias” to denote the first moment of the
response and the subscript “0” to denote the unperturbed
dynamics of the second moment.

As noted in Sec. I, the mere integration of (1.1) leads to
(1.3) [23]. By replacing the expression (1.3) in (5.17) and

(X (1)) pias= (5.18)
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(5.18) and by differentiating the resulting expression with
respect to time, we derive a final expression with the form
of the generalized Green-Kubo expression (1.17). Usually
the Green-Kubo theory is applied to processes where the
correlation function of the velocity is integrable, thereby
resulting in transport quantities obtained by replacing the
upper limit of time integration, ¢, with infinity. It is re-
markable that the theory developed herein leads to the
conclusion that the case of anomalous diffusion in the
nonstationary regime can be studied with a formalism
compatible with the Green-Kubo method, with the only
caveat being that of relaxing the assumption that in the
long-time regime the conductivity reaches a time-
independent value. We see indeed that our theoretical
derivation leads to a conductivity which is a steadily in-
creasing function of time.

This is confirmed by Fig. 6, showing the dependence of

3
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FIG. 6. Response of map (3.1)-(3.3) to the dynamical pertur-
bation with z =%. (a) Nonstationary condition. The dots
denote the results of the computer calculations corresponding
to a flat initial distribution for £&. The short-dashed line denotes
the prediction of the nonstationary JM approach. The long-
dashed line is the prediction of the VM theory in the nonsta-
tionary case. (b) Stationary case. The dots correspond to the
computational results obtained adopting the stationary
prescription illustrated in Sec. III. The long-dashed line shows
the prediction of the VM theory in the stationary case [coincid-
ing with that of all the theories resting on the application of
method (ii)]. The short-dashed line denotes the prediction of
the JM theory in the stationary case, (5.14). The solid line cor-
responds to the prediction of the ME theory by means of
method (i).
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the first moment of the response on ¢*~* in the early part
of the nonstationary process (a), and the linear depen-
dence on time in the stationary state in the presence of
perturbation (b). Figure 6 refers to the case with u=2.5
and A=0.01.

We devote special attention to the nonstationary case,
resulting in the nonlinear dependence of the first moment
on time. After assessing with Fig. 6(a) that the power of
the response is that predicted by the theory in the corre-
sponding nonstationary condition, we make the following
more refined comparison. We numerically evaluate
(x())4ias and {x%(2)),. Then we determine their ratio

<x(t)>bias
)\<x2(t) )0

and compare the numerical result to the theoretical pre-
dictions

h(n)= (5.19)

1 (u—2)
h =— 5.20
() 4 (u—1) (520
of the JM approach and
h(p)=1% (5.21)

of the VM approach. The result of this comparison is
shown in Fig. 7. The JM result is in quantitative and
qualitative agreement with the results of numerical calcu-
lations which is significantly closer to the numerical re-
sult than that of the VM approach.

C. Comments on the response of anomalous diffusion to
perturbation

The long-time drift U produced by the perturbation
can be evaluated with straightforward arguments. Let us
consider the geometric perturbation first. The statistical
weight of the perturbed and unperturbed states of the ve-
locity, namely, those concerning the perturbed and the
unperturbed laminar regions, respectively, are given by

0.2
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FIG. 7. h(u) coefficient function defined by (5.19). The dots
show the results of numerical calculations, the short-dashed line
is the prediction of the JM theory, and the long-dashed line
denotes that of the VM approach. The JM and the VM ap-
proaches refer to the nonstationary case. The “stationary” ME
theory, with method (i), would coincide with the short-dashed
line.
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t )
P =—<—1—— (5.22)
7 () +{t)
and
_ (t)
Po——(th(t) , (5.23)
where
(t,)= [ "dreg,(1) (5.24)

and (t) is the usual mean time of the unperturbed lami-
nar region. We thus obtain

U_(t)—(t,,)
A+,

The long-time drift in the dynamical case is obtained
from (5.25) by replacing (¢, ) with (z.), the mean wait-
ing time within the laminar region under the action of the
dynamical perturbation.

For the geometric bias we have

B_
(t,,>=—31”_2 .

(5.25)

(5.26)

In the case of the dynamical bias, at the lowest order in €
we have

<t€>z<t>—ﬁ:—;r<3—p)3#—‘sﬂ-2 . (5.27)

Consequently, in the case of the geometric bias we obtain

1
v 2B

and in the case of the dynamical bias, still at the lowest

order in €,

=€”_2'(y—1)r(3—y)3#‘2
> .

(5.28)

U (5.29)

It is remarkable that (5.28) corresponds to the predictions
of all three theories, in both the stationary and the non-
stationary regimes, and that (5.29) is the drift predicted
by all the theories if method (ii) is applied; see (5.16).

We are thus led to the following, very simple interpre-
tation of the process of the response to perturbations.
The nonstationary prediction corresponds to an abrupt
application of the perturbation to the system undergoing
a stationary unperturbed diffusion. This would imply an
initial condition with the velocity at equilibrium under
the action of no bias. However, the power of the time
dependence of the nonstationary process is essentially in-
dependent of whether we use as the initial condition the
unperturbed equilibrium distribution of the velocity or a
merely flat distribution. Thus we can apply to this latter
condition the same arguments as those we would apply to
a real experimental perturbation resting on the abrupt ap-
plication of the perturbation to a sample of particles in a
state of free diffusion.

Due to the fact that the regression of velocity to equi-
librium is expected to be as slow as its equilibrium corre-
lation function, the whole process of diffusion takes place
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in a nonequilibrium configuration. All the nonstationary
theories refer to this kind of diffusion process. As slow as
it is, this kind of diffusion process does not last forever.
In the region of extremely large times, when the variable
velocity becomes close to the final equilibrium condition,
the diffusion process becomes stationary and the first mo-
ment x(¢)) increases linearly in time with a rate given
by the time-independent drift U.

The first part of the response process can be described
by a Green-Kubo formula. However, since the correla-
tion function of the velocity is not integrable between
zero and infinity, the resulting conductivity turns out to
increase as a function of time.

The system slowly moves from this slow but transient
condition into the stationary regime, which is then de-
scribed by a time-independent conductivity. In spite of
the fact that in the long-time regime a time-independent
conductivity is recovered, this cannot fit the prescriptions
of the Green-Kubo approach. In this long-time regime
the Green-Kubo approach would lead to an infinite con-
ductivity, and the finite values for the conductivities
(5.28) and (5.29) cannot be derived from the Green-Kubo
relation involving the equilibrium autocorrelation func-
tion of the velocity &.

It must be remarked that not all the possible kinds of
perturbations can trigger the anomalous Green-Kubo
response process of (1.17). For this to take place it is
necessary to perturb the velocity distribution in the re-
gion where the regression to equilibrium is extremely
slow. The geometrical perturbation, on the contrary,
perturbs the velocity distribution in the regions close to
the internal border of the laminar region, where the re-
gression to equilibrium is very fast. This is the reason
why all the theories, in both the stationary and nonsta-
tionary regimes, result in the same prediction. The pro-
cess of regression to equilibrium is so fast as to make the
diffusion process stationary over all the time region ex-
plored. The rapidity of the regression to equilibrium is
also the reason why the diffusion process turns out to be
scarcely dependent on the details of the microscopic pro-
cess. The different theories imply different “microscopic”
processes, but, due to the fact that the ‘“macroscopic”
process is insensitive to the microscopic details, they re-
sult in the same long-time prediction.

V1. CONCLUDING REMARKS

A derivation of the Lévy distribution has been present-
ed based on the ME. Although this approach is not yet a
rigorous derivation of the Lévy processes from dynamics,
it provides all the correct asymptotic properties for the
velocity correlation function, and for the second moment
and tails of the probability distribution of x in terms of
the waiting time distribution ¥(z).

The ME method is not yet as good as the VM ap-
proach, which leads to exact agreement with the dynami-
cal prediction (1.3) supplemented by the expression for
the correlation function of the velocity (1.4). The pur-
pose of future investigations should be that of deriving
the ME directly from the Liouvillian picture [5] or, in the
case of mappings, from the Perron-Frobenius equation
[30].
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We have focused our attention on the parameter region
2 <u <3, because the ME is tailored for this region. It is
straightforward to assess that all three theories, in both
the stationary and nonstationary regimes, result in the
same reasonable predictions for > 3. This can be traced
back to the fact that for > 3 there exists a finite second
moment of ¢(z). However, all three theories result in a
divergence for u—3 from the region 2 <u <3, which is
not consistent with the numerical results. Numerical ex-
periment shows these divergences to be unphysical, and
the problem of how to suppress them will be the subject
of a future publication.

The treatment of the response to perturbations present-
ed here will hopefully lead to new theoretical insights
into the evolution of dynamical systems. The problem of
the linear response of maps has already been the subject
of investigation by several authors (see, for instance, [31]
and [32]). However, the preceding researchers were
essentially focused on the response of a map variable,
such as the velocity £, which is constrained to move in a
bounded interval, rather than on the diffusing variable x
associated with the velocity £. Another difference is the
fact that the perturbation is applied to a variable £ which
is here a source of anomalous rather than normal
diffusion.

We have seen that a linear response treatment in this
anomalous condition is still possible. However, this
conflicts with the Kubo perturbation treatment. In the
early part of the process the conductivity turns out to be
an increasing function of time, thereby driving the system
towards physical conditions more and more incompatible
with the Kubo [33,28] perturbation treatment, which
aims at expressing the response in terms of the unper-
turbed correlation function of the velocity. We have seen
that in the stationary long-time limit the response is con-
trolled by a transport parameter which does not have
anything to do with the velocity correlation function, as
in the conventional Kubo [33,28] treatment. As a final
comment, we would like to stress that the VM theory
conflicts with the application of method (i) and, thus,
with the possibility of recovering a Green-Kubo struc-
ture. This might be a sign of the strength rather than the
weakness of this theory, which is proved to fit the dynam-
ical constraints (1.3) and (1.4) and is thus expected to
reproduce rigorously the stationary dynamical condition
even in the presence of perturbation.
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APPENDIX A

The choice of T as the first moment of the waiting time
distribution (2.11) is dictated by the fact that this is the
only characteristic time scale available in the region
2 <u <3, compatible with the existence of Lévy process-
es. Note that the first moment of the distribution is the
only finite one of integer value.

In addition to this intuitive argument, we can also
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adopt random walk arguments. As we have mentioned in
the Introduction, we derived the Lévy distribution from a
ME approach without recourse to random walks. There-
fore the remarks of this Appendix may be regarded as a
check of this choice of T, rather than being the only plau-
sible justification for (2.11).

The theoretical developments carried out here are simi-
lar to those used by Wang [29] but they are adapted to
our specific need of determining accurate numerical fac-
tors. Let us denote by p(t) the probability that a jump
from one site to another occurs (if we use the JM) or the
probability that the particle stops and starts moving in a
randomly chosen new direction (if we use the VM). The
mean value of jumps occurring in the time interval rang-
ing from O to ¢, denoted by N (1), is given by

t
N(t)= "dt' .
()= [ p(ehat (A1)
Therefore the rate we wish to determine is
1 _ .. N(
7= im 2 2

Note that p (¢) is derived from random walk arguments as
follows. We write

p(t)=[" Q(x,ndx ,

where Q (x,t) is the probability for the particle to arrive
at the site x at time ¢, and to stop before changing direc-
tion. Using Eq. (7) of Ref. [15] we see that Q(k,s) can be
expressed in the following form:

1

(A3)

0(k,s)=——F=——. (A4)
¢ 1—3(k,s)
Thus using (A3) we obtain
A 1
p(s)=0(0,s)=———, (AS)
Plo=0 1—9(s)
so that in the asymptotic regime
1
H=-—,
p(t) ) (A6)

where (t) is the first moment of the waiting time distri-

bution ¥(z). In conclusion we derive
T=(t) (A7)

supporting our choice in (2.11).

APPENDIX B

This Appendix is devoted to adapting the probability
distribution of the JM to the stationary condition. Fol-
lowing Haus and Kehr [18], we express the probability
distribution of the JM as

Pik,s)= Bk ¥s) L g (B1)
1—y(k,s)
where

9(s)= 100

N

, (B2)
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Ais)= J——ﬁs(o;” , (B3)

and A (x,t) denotes the probability for moving a distance
x in time 7 in the first motion event. To proceed, we have
to make a proper choice for 4 (x,t), corresponding to sta-
tionary initial conditions.

To make this choice, we note that Eq. (3.3) of Ref. [18]
gives the distribution h(t) corresponding to stationary
conditions for the case of a decoupled ¥(x,t). It reads

_ Y@
hO="773, (B4)
where
W)= [ “dr'yr’) . (BS)

We generalize (B4) to the case of our space-time coupled
¥(x,t) in the following way:

hx, =250 (B6)
(t)
where
W(x,1)=18(|x| —1)¥(2) . (B7)

This is the same choice as that adopted in Refs. [16] and
[17] for the VM to define h(x,?). Notice that Haus and
Kehr choose another generalization of (B4); see Eq. (3.16)
of Ref. [18]. That choice is not appropriate here, be-
cause the waiting time distributions ¥(z) considered in
this paper do not have a finite second moment, and with
the choice of Haus and Kehr this would lead to a diverg-
ing second moment (x%(¢)).

APPENDIX C

The purpose of this Appendix is to provide details on
the calculations leading to the asymptotic expression for
the probability distribution, and the value (2.17) for the
parameter b. We have seen in Sec. II that the ME ap-
proach leads to the following expression for the Fourier-
Laplace transform of the probability distribution P(x,t):

N 1
P(k,s)=——— . (C1)
s —R(k,s)
It is interesting to remark that this structure, and the im-
portant detailed balance condition

R(0,5)=0, (C2)

are shared by the three theories.
As far as the ME approach is concerned, from Sec. II
we derive

Rk,s)= (k’S)T_ (s) (C3)

Equations (10) and (11) of Ref. [15] give for the nonsta-
tionary JM

R(k,s)= (k’;)(_) (s) . (C4)
S

and for the nonstationary VM
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R(k,s)=s +_1£_(1c,s)—1 .

Y(k,s) €
P(k,s), ¥(s), and P(k,s) are given by [15]
W k,s)= fo‘”dt exp( —st) cos(kt)y¥(t) , (C6)
N o © 1—3(s)
y = —_— 4 ’ —_—__Ad'__
()= [ "drexpl—st) [ “dr'p) ==L (c)
Wlk,5)= [ "dt expl—st) cos(ka) [ “de'pir) . (C8)

From Eq. (20) of Ref. [17] we get for the stationary VM
() [1—Pk,s)]

R(k,s)=5 — — = , 9)
T T @) P () 1=k, 1B (kys)
where H (k,s) is given by [16]:
—_1 r~ _
Hk,s)= ) fo dt exp( —st) cos(kt)
X [ Zdre—og(e) . (C10)
t
Using Egs. (B1) and (B6) we get
Rik,s)=s—— A<’>“—ﬂk’i)] , (C11)
’ Pk, )P(s)+ (e Y[1—P(k,s)1H (s)
where
1 P(s)
=—|1— C12
A(s) L m (C12)

We are thus in a position to prove the detailed balance
condition (C2) also for (C4),{ (CS), (99), andA(Cll) uﬁing
the properties 15]  ¥(0,5)=1(s), W(0,s)=W¥(s)
=[1—$(s)]/s, and H(0,s)=HA(s).

Now, we make s and k tend to zero subject to the con-
straint s ~k% and a>1, so that s tends to zero more
quickly than does k. As pointed out in Sec. II, in the re-
gion 2 <u <3 this condition is necessary to establish a
connection with the Lévy processes.

We also use the asymptotic expansion

Ps)=1—(t)s —est™ !, (C13)
with

<t>=‘£‘ (C14)
and

c=TQ2—u)B* !, (C15)

Taking the limit of vanishing s and k in Egs. (C3)-(C12)
we then obtain for K( k,s), at leading order in k,

k! (C16)

R(k,s)= —*%cos %(,u,—l)
for the JM and the VM approaches, both in the station-
ary and nonstationary regimes, whereas the ME ap-
proach leads to

R(k,s)=—=< cos

T (C17)

. — u—1
2(;A 1)]k .
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Notice that the choice we made for T with (2.11),
T =(t), leads to the same value b for all three theories,

=_C Ty —
b—<t>cos 2(u ny, (C18)

which coincides with the value for b given by (2.17).
Equation (C18) can be rewritten using (C14) and (C15) as

=—B*M(3—p)cos | = (u—1) |,

) (C19)

from which it is easy to see that, for 2 <u <3, b is indeed
a positive quantity.

Notice that the calculations leading to (C18), and con-
sequently to (2.17), would also be valid in the region
1<u<2if a>1. If ais identified with p— 1, on the con-
trary, the approximations on which our calculation rests
are invalidated, and b turns out to vanish.

APPENDIX D

Here we provide details of the calculations necessary to
derive the explicit expressions for the moments,
(4.1)-(4.4). The Fourier-Laplace transform of the second
moment is derived from that of the probability distribu-
tion by using

2% )
(2s)y=— | Xkl | __ L ai?gk,n ’
9k k=0 s 9k £ =0
(D1)
which stems from
) 1
Plk,s)=——5"= (D2)
s—ﬁ(k,s)
under the assumption
RKiks) | o D3
9k k=0

which is fulfilled by all theories considered here.
Supplementing (D1) with (C3), (C4), (C5), (C9), and
(C11) we get

a2y 1 1 d¥s) 4
(2%(s)) ERTIPE (D4)
for the ME;
2/\
(22s)) =5 1) (D)
s° W(s) ds
for the nonstationary JM;
(225)) =2 |B(5)+ LY (D6)
<t>s ds
for the stationary JM;
(22 =2 =1 [@(s)+ 2¥s) (D7)
s W(s) ds

for the nonstationary VM; and
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B(s)
(t)

2
~3 (D8)

(%s)) = 1—

for the stationary VM.
Equations (4.1)-(4.4) are derived from (D4)-(D8) by
using the asymptotic expansion (C13), relation (C7), and
the inverse Laplace transform
the
I'4—pu)

t4m
(4—w)3—pu)2—p)(2—p) -~
(DY)

LY (s %)=

APPENDIX E

This Appendix is devoted to illustrating the calcula-
tions leading to the predictions on the response to the
two different types of perturbations discussed in Sec. V.
For both types of perturbations, both affecting the left
laminar region, we use the following waiting time distri-
bution:

Y(x,1)=18(x —)(1)+38(x + )¢, (1), (E1)

where 9,(¢) is a given perturbed distribution depending
on a perturbation strength 7. Throughout our calcula-
tions we use the following definition:

AP()=4y,(1)—¢(2) . (E2)

We evaluate the response looking at the first moment,
which vanishes in the unperturbed case. In the presence
of the perturbation the first moment does not vanish, and
is derived from the formula

3P(k,s)
ok

Ak (k,s)
ok

_i
0 52

(R(s))=—i

.
(E3)

The functions W(¢), W(x,t), h(x,t), H(t), and H(x,t)
which appear in the probability distributions P(x,?) of
the various theories are now defined by

k

k

__1_ ® ’ ’ _1_ ® ’ ’
V== [ “dryan+ [ Tdrw, ), (E4)

— 1 ® ’ ’
W(x,0)=—8(x =) [ “dr'y(e’)

1 d ’ ’
+o8x+0) [ Tdry, i), (E5)
- Y(x,1)
hixn==3%, (E6)
H=— |3 [ “ar—nye)

] ® ’ ’ ’
+Ef, dt'(t' =), (t )J , (E7)

1

p— l — * gt ’
Hx,n=—x 125(): 0 [ "dr e —oygie)

1 ® ’ ’ ’
+280x+0) [ Tdr' (e =i e )l . (B9
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Thus we can express (E3) in terms of Ay at the lowest or-
der in 7 as follows:

1 d 3
————— E9
for the ME;
1 1
(zs)=-1-1_L g (E10)
SRR W(s) ds vis
for the nonstationary JM;
iy 1 Adls)
(%(s)) O (E11)
for the stationary JM;
(2(s))=— 1 A¥s) (E12)
2s ‘Ilo(s) s
for the nonstationary VM; and
<x(S)>_Wd Al,ll(s =0) (E13)
for the stationary VM.

Note that with ¥y(s) we denote W(s) in the unper-
turbed case, namely,

Byl =1—H (E14)

To proceed further we must consider the specific kind of
perturbation under study.

1. Geometric bias

In this case we have

4,
P ()= —T— (E15)

(B—m+t)

In this case, at the lowest order in 1 and in the limit of
very small s, we obtain

Af(s)=n —si-f-—(#——&s“—‘ (E16)

B
and
Wo(s)=(t) . (E17)

By replacing (E16) and (E17) into (E9)-(E13) we obtain
for all theories

<x<z))=5’1§z ) (E18)

2. Dynamical bias

Let us consider the perturbed waiting time distribution

exp(—et) , (E19)

A,
(B +1)*

whose Laplace transform can be written

Y (1)=
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Pun=dote)l (E20)
Y(e)
At lowest order in € we obtain
Ad(s)=¢ <t>$(s)+i£(;s—) . (E21)

Making s tend to zero and using the asymptotic expres-
sion (C14) for ¢(s), we obtain

Ad(s)=—ec(p—1)s*72,

o (E22)
Wo(s)=(t) .

By replacing these expressions in (E9)-(E12) and using
the inverse Laplace transform of s* > [see (D9)], we ob-
tain Egs. (5.13)-(5.15). This way of determining the
long-time behavior of the first moment adheres to the
prescriptions of the method (i) illustrated in Sec. V.

To evaluate the response of the VM in the stationary
case, we cannot apply this method, because if we adopted
the expansion (E21) Eq. (1.2) would involve the second
derivative of 1(s) which diverges in the limiting case of s
tending to zero. Therefore we apply method (ii) of Sec.
V. We first make s tend to zero in (E19), and we obtain at
lowest order in s

dﬂ(::)/de (1)
YP(e)

Sending now € to zero and using the asymptotic expres-
sion (C13) for (&) we get

A(s)=s ) (E23)

Ad(s)=s[—c(u—1)e*"2], (E24)
which gives
E‘}Afk(s =0)=—c(u—1)et"2% . (E25)

Replacing (E25) into (E13) we obtain the result (5.16). If
we apply the same procedure to all the other theories, in
both the stationary and nonstationary regimes, we recov-
er the same results (5.16).
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APPENDIX F

The effect of the first perturbation can be easily evalu-
ated as follows. From the theory illustrated in Ref. [15]
we derive that the parameter B of (2.3) is forced by the
unperturbed map of Sec. III to get the value

p=2vw-npE=Ll (F1)

a

Notice that the unperturbed value of g is determined by
the matching condition

gl)=L, (F2)
which sets
a=2*, (F3)

As mentioned in Sec. V the perturbation reduces the size
of the left laminar region by the quantity p and leaves un-
touched the right laminar region. For numerical pur-
poses it easier and more accurate to move the center of
symmetry of the map (3.2) to the left by a quantity p in
such a way as to make the right border of the left laminar
region move to the left and the left border of the right
laminar region to the left by the same quantity. Then
from the matching condition

Bpen(7—P)=1 (F4)
we obtain
Apery = (1—1_—% . (F5)
(3+p)
Of course, for the perturbed value of B we get
B =21/ VAL (F6)

pert

From this we can easily evaluate the parameter 7, in
terms of which the response to the geometrical perturba-
tion is expressed in Sec. V. In the limiting case of weak
perturbations (p <<1) we get

N=Bpen —B=~(ip—1)p . (F7)
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